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Math 5B  11.8-11.11 Notes: Power Series 
	
Recall	our	original	goal:	
	

	
	
	
	
Also	recall	your	HW	from	11.6:	
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11.8 Power Series 

A	power	series	in	x	:			 	

	
We	are	often	asked	to	determine	for	what	values	of	x	the	given	series	converges,	the	Radius	of	Convergence	and	Interval	of	
Convergence	
	
Examples:	

	

	
And	what	is	the	sum?	
	
	
	
	
	
	
	

	

	
	
	
	

cnx
n

n=0

∞

∑

xn
n=0

∞

∑

3n xn
n=0

∞

∑
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(−1)n x2n

(2n)!n=0

∞

∑

n!xn
n=0

∞

∑

(−1)n xn

3n(n+1)n=0

∞

∑
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For	power	seres	

of	the	form	 ,	one	of	3	things	can	happen:	

	
1)___________________________________________________________	
	
2___________________________________________________________	
	
3___________________________________________________________	
	
	
	

Extending	the	above	idea,	we	will	consider	power	series	“centered	at	a”		:			 	

	

	
	
Examples:	Find	the	interval	and	radius	of	convergence	
	

cnx
n

n=0

∞

∑

cn(x − a)
n

n=0

∞

∑
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(x − 3)n
n=0

∞

∑

(−1)n−1

n
(x − 2)n

n=0

∞

∑
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11.10 and 11.9  Part 1: Generating Taylor and Maclaurin Series using the definition 

In	the	last	section	we	found	that	 	converges	for	 	.		Not	only	that	but	we	are	able	to	find	the	exact	sum	in	this	case.		

That	is,	if	 	,		 =	____________	

What	does	this	mean?		Graph		 		and	 on	the	same	axes	using	Desmos.			(	To	graph	the	

second	equation	on	Desmos,	use	the	Desmos	keyboard,	functions,	misc	to	get	the	summation	symbol,	then	put	in	 		.		

Click	on	“add	slider	for	N”.		You	can	change	the	range	for	n	to	start	at	zero	by	clicking	on	the	endpoints	of	the	shown	slider.)	
	

	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
Can	we	do	this	for	any	function?		Given	a	function	f(x):	
	 Does	f	have	a	power	series	representation?		(11.10	ii)	
	 If	so,	how	do	we	find	it?	 (11.10i)	
	

xn
n=0

∞

∑ x <1

x <1 f (x) = 1+ x + x2 + x3 + ......= xn
n=0

∞

∑

y = 1
1− x

y = 1+ x + x2 + x3 + ......= xn
n=0

∞

∑

y = xn
n=0

N

∑

S4 = 1+ x + x
2 + x3
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We	start	by	answering	the	second	question	first.		Suppose	f	does	have	a	power	series	representation.		Let	

		 	 	

	
Our	goal	is	to	find	the	values	for	 		such	that	 	________________________for	all	 .			
	
If		 ,	then	it	would	follow	that:		 ,		 ,	 ,…etc.		In	this	case,		
			 ,	 ,		 ,	 ,…		etc.		Using	these	conditions,	we	can	find	the	values	of	 			
	
Taking	derivatives	of	 ,	which	we	will	use	for	applying	the	conditions							 						and	thus	finding.	 	
	

			 	 	 __________	 	
	

		 								 __________	 	
	

	 	 	 __________	 	
	

______________________________________________________________________	 	 __________	 	
	

______________________________________________________________________		 __________	 	
	
	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	
	
Following	the	pattern,	we	find	 	 	 	 	 	 	 __________	 	
	
	
	
	
	
	

P(x) = cn(x − a)
n

n=0

∞

∑ =c0 +c1(x − a)+ c2(x − a)
2 + c3(x − a)

3 + c4(x − a)
4 + c5(x − a)

5 + ...

ci P(x) = x < R

P(x) = f (x) ′P (x) = ′f (x) ′′P (x) = ′′f (x) ′′′P (x) = ′′′f (x)
P(a) = f (a) ′P (a) = ′f (a) ′′P (a) = ′′f (a) ′′′P (a) = ′′′f (a) ci

P(x) P(n) (a) = f (n) (a) cn

P(x) =c0 +c1(x − a)+ c2(x − a)
2 + c3(x − a)

3 + c4(x − a)
4 + c5(x − a)

5 + ... P(a) = c0 = ________

′P (x) = c1 + 2c2(x − a)+ 3c3(x − a)
2 + 4c4(x − a)

3 +5c5(x − a)
4 + ... ′P (a) = c1 = ________

′′P (x) = 2c2 + 3• 2c3(x − a) + 4•3c4(x − a)
2 +5• 4c5(x − a)

3 + ... ′′P (a) = c2 = ________

′′′P (x) = ′′′P (a) = c3 = ________

P(4) (x) = P(4) (a) = c4 = ________

! !

P(n) (a) = cn = ________
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In	general	we	find:	 	which	we	substitute	into	the	power	series	

		to	get	the	following:	

	
	IF	 		has	a	power	series	representation	for	 ,	it	must	be	in	the	form:	

		

This	is	called	the	Taylor	Series	of	 	about	x=a	(or	centered	at	x=a)	
In	the	specific	case	where	a=0,	the	Taylor	Series	is	given	the	special	name	Maclaurin	Series.	
	

		

	
To	find	the	Taylor	Series	representation	of	 	we	need	to	compute 		and	if	possible	
find	pattern	for	 	and	to	substitute	those	values	into	the	Taylor	Series	formula:	
	

	
	

cn =
f (n) (a)
n!

P(x) = cn(x − a)
n

n=0

∞

∑ =c0 +c1(x − a)+ c2(x − a)
2 + c3(x − a)

3 + c4(x − a)
4 + c5(x − a)

5 + ...

f (x) x < R

f (x) = f (a) + ′f (a)(x − a)+ ′′f (a)
2!

(x − a)2 + ′′′f (a)
3!

(x − a)3 + f
(4) (a)
4!

(x − a)4 + ...= f (n) (a)
n!

(x − a)n
n=0

∞

∑
f (x)

f (x) = f (0) + ′f (0)x + ′′f (0)
2!

x2 + ′′′f (0)
3!

x3 + f
(4) (0)
4!

x4 + ...= f (n) (0)
n!

xn
n=0

∞

∑

f (x) f (a), ′f (a), ′′f (a), ′′′f (a), f (4) (a),...
f (n) (a)
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11.10 and 11.9  Part 2: Generating Power Series from the Definition 
	
To	find	the	Taylor	Series	representation	of	 	we	need	to	compute 		and	if	possible	
find	pattern	for	 	and	to	substitute	those	values	into	the	Taylor	Series	formula:	
	

	

	
	

Example:		Find	the	Maclaurin	Series	for	 		

	
First:		Find	a	patter	for	___________	
	

  at x 
at 
x=a=0 

f     

f '     

f ''     

f '''     

      

f n f n(x)= f n(0)= 
	

f (x) f (a), ′f (a), ′′f (a), ′′′f (a), f (4) (a),...
f (n) (a)

f (x) = 1
1− x
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Example:		Find	the	Maclaurin	Series	of		 		

First,	try	to	find	a	pattern	for	 	since	Marlaurin	series	implies	a=0.	

  at x 
at 
x=a=0 

f     

f '     

f ''     

f '''     

      

f n f n(x)= f n(0)= 

	
becomes	

	which	leads	to	

		
	

Find	the	interval	of	convergence:		 		

Look	at	the	graph		of	 		and	 on	the	same	axes	using	Desmos	

	

f (x) = ex

f (n) (a) = f (n) (0)

ex =

L = lim
n→∞

an+1
n

= lim
n→∞

y = ex y = 1
n!
xn

n=0

∞

∑
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Example:		Find	the	Taylor	Series	for	 about	a=2	

First,	try	to	find	a	pattern	for	 	

  at x 
at 
x=a=2 

f     

f '     

f ''     

f '''     

      

      

f n f n(x)= f n(2)= 
	
Taylor	Series	Formula:	

For	a=2:	
	

	 		

leads	to	

	

	 	 The	interval	of	convergence	can	be	shown	to	be		(0,	4]		(check)	
	

f (x) = ln x

f (n) (a) = f (n) (2)

f (x) = f (2) + ′f (2)(x − 2)+ ′′f (2)
2!

(x − 2)2 + ′′′f (2)
3!

(x − 2)3 + f
(4) (2)
4!

(x − 2)4 + ...= f (n) (2)
n!

(x − 2)n
n=0

∞

∑

ln(x) = + (x − 2)+
2!

(x − 2)2 +
3!

(x − 2)3 +
4!

(x − 2)4 + ...

ln(x) = ln(2) + _______
n=1

∞

∑
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Example:		Find	the	Maclaurin	Series	of		 	

First,	try	to	find	a	pattern	for	 	

  at x 
at 
x=a=0 

f     

f ‘     

f ‘’     

f ‘’’     

      

      

      

      

f n f n(x)= f n(0)= 
			
Note:		If	a	pattern	cannot	be	found,	we	have	to	just	write	out	terms	as	needed.	
Then	
	
	 		
		
Leads	to	
	

		
	

f (x) = cos(x)

f (n) (a)

cos(x) =

cos(x) =
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Which	shows	a	pattern	after	all:	
	
	 	 		
	
	 	 Interval	of	Convergence:		 	
	
	
	
	

Example:		Find	the	Maclaurin	Series	for		 	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Note:		Binomial	Series	can	be	done	directly,	without	formula)	

cos(x) =

(−∞,∞)

f (x) = 1
(1+ x)4
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11.10 and 11.9  Part 3: Generating New Series from Known Series 
	
Given	a	convergent	power	series,	there	are	many	operations	we	can	perform	which	will	create	a	new	convergent	power	series.		
Because	these	are	not	finite	sums,	the	fact	that	these	operations	are	permissible,	maintaining	the	equality,	would	need	to	be	
proved.	
	

Substitution		(may	change	the	Radius	of	Convergence)	
	

Example:		Substitute	–x	for	x	in	the	series	 	to	create	a	new	series.	

	 			 	

	

	

	 	 	 	 	 	 	 	 				
	

	

Example:		Substitute	3x	for	x	in	the	series	 	to	create	a	new	series.	

	

	 			 	

	
			 	

	 	 	 	 	 	 	 				
	

	

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑
1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑ for x <1

1
1− ( )

= 1+ ( )+ ( )2 + ( )3 + ......= ( )n
n=0

∞

∑ for ( ) <1

=
n=0

∞

∑ for x <1

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑ for x <1

1
1− ( )

= 1+ ( )+ ( )2 + ( )3 + ......= ( )n
n=0

∞

∑ for ( ) <1

=
n=0

∞

∑ for x <
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Example:		Substitute	x2	for		x	in	the	series	for	cos(x)		to	create	a	new	series.	
	

	 			 	

	 	

	
	

Multiplication	by	axn	-	(does	not	change	the	Radius	of	Convergence)	
	

Example:		Multiply		the	series	 	by	2x	to	create	a	new	series.	

	

	 			 	

	
	

Differentiation	(may	change	the	Interval	of	Convergence,	but	not	the	radius)	
	

Example:		Differentiate	the	series	 		to	create	a	new	series.	

	

	 			 	

	
	
	
Notice	what	can	happen	to	the	index	when	differentiating.		Note	also	that	often	times	the	index	will	be	shifted	so	that	the	
answer	is	in	terms	of			 	

cos x = 1− x
2

2!
+ x

4

4!
+ ......= ( −1)n

n=0

∞

∑ x2n

(2n)!
for (−∞,∞)

cos( ) = 1− ( )2

2!
+ ( )4

4!
+ ......= ( −1)n

n=0

∞

∑ ( )2n
(2n)!

=
n=0

∞

∑

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑ for x <1

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑

1
1− x

= 1+ x + x2 + x3 + ......= xn
n=0

∞

∑ for x <1

xn
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Example:		Differentiate		the	series	for	cos(x)		to	create	a	new	series.	
	

	 				

	
	
	
	
	
	
	

Integration	(may	change	the	Interval	of	Convergence,	but	not	the	radius)	
	
Example:		Integrate		the	series	for	cos(x)		to	create	a	new	series.	
	

	 				

	
	
	
	
	
	
	
Find	C:	
	

cos x = 1− x
2

2!
+ x

4

4!
+ ......= ( −1)n

n=0

∞

∑ x2n

(2n)!

cos x = 1− x
2

2!
+ x

4

4!
+ ......= ( −1)n

n=0

∞

∑ x2n

(2n)!
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	 Multiplying/Dividing	Series		 	 Interval	of	Convergence	is	intersection,	with	denominator	not	equal	zero.	
	
	 Example:		Find	the	Maclaurin	series	for	 	

a) Direct	Approach,	using	the	definition	and	generating	 	if	possible:		

  at x 
at 
x=a=0 

f     

f '     

f ''     

f '''     

      

f n f n(x)= f n(0)= 
	
	 	 b)		Using	known	series:	

	 	 	 	 	

	 	

	 	 	 				
	

	
	
	
Notice	in	this	case,	we	do	not	have	the	general	term	so	cannot	write	in	sigma	notation.	
See	book	for	example	using	division	to	get	the	Maclaurin	series	for		 	

f (x) = ex sin x
f (n) (0)

ex = 1
n!
xn

n=0

∞

∑ = 1+ x + x2
2! + x3

3! + x4
4!!

sin(x) = (−1)n
n=0

∞

∑ x2n+1

(2n+1)!
= x − x

3

3!
+ x

5

5!
− x

7

7!
+ ...

ex sin x =

f (x) = tan x
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Now	that	we	have	discussed	the	various	operations	we	can	use	on	known	series	to	create	new	series,	let	us	look	at	how	we	will	
actually	make	use	of	those	operations.		Typically	we	are	not	given	a	known	series	and	told	what	operations	to	perform	on	it	
but	instead	we	work	in	reverse.		We	are	given	a	function	for	which	we	would	like	to	create	a	power	series	representation.		We	
can	build	the	series	directly,	using	the	Taylor	Series	definition,		

	

but	if	we	can	see	how	the	given	function	could	be	created	from	a	function	with	a	known,	or	easily	found	series	representation,	
that	might	be	quicker.	
	
	
Example:		Find	the	Maclaurin	series	for	 		
	

	

	

	

	
	
	
	
	
	
	
	
	
	

f (x) = f (a) + ′f (a)(x − a)+ ′′f (a)
2!

(x − a)2 + ′′′f (a)
3!

(x − a)3 + f
(4) (a)
4!

(x − a)4 + ...= f (n) (a)
n!

(x − a)n
n=0

∞

∑

f (x) = e− x
2

ex = 1
n!
xn

n=0

∞

∑ = 1+ x + x2
2! + x3

3! + x4
4!!

e− x
2

= 1
n!
( )n

n=0

∞

∑ = 1+ ( )+ ( )2

2! + ( )3

3! + ( )4

4! !
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Example:		Find	a	power	series	representation	for		 	

	
Note:		On	the	problems	in	11.9,	all	the	problems	build	using	the	geometric	series.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

f (x) = 2
3x + 4
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Example:		Find		a	power	series	representation	for		 		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

f (x) = tan−1 x2( )
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Example	:		Find	the	Maclaurin	Series	for	 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Note:		pattern	sometimes	begins	for	n>0)	
	

f (x) = 1

1− x2
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11.10 and 11.9 Part 4: Using Taylor Series for Estimation and Integration. 
	
FINALLY, in this part we will do what we set out to do in this chapter!  We will see how Taylor series can be used for 
estimation and integration	
	
Application	Example:		Use	the	Maclaurin	series	for	 		

to	estimate														a)		 	 	 b)		 								with	error	<	0.01.		

Recall:		 	for	all	x.	

a)	 	 	 					

Recall	AST	error	estimate,	…	 	 	 	 	 	 	 	 	 	 ^	
	 	 since	the	5th	term	is	the	first	term	<	0.01,	our	estimate	is	taken	from	the	_______th	partial	sum.	
	
	 	 	 					(calculator	value	0.670320046)	
	
	
	

b)	 					

	 	

	 	 	 	 	 	 	 	 	 					^	
	 	 	 	 (calculator	value	0.049787)	
	
Question:	Why	does	part	b	require	many	more	terms	to	provide	an	estimate	with	the	same	error?	
	 	
Taylor	Series	Converge	faster	for	values	of	x	near	the	base	point	a.		
It	is	desirable	to	choose	Taylor	Series	with	a	base	point	close	to	region	of	interest.		See	handout	on	5B	page	about	choosing	
base	point.	

f (x) = ex

e−0.4 e−3

ex = 1
n!
xn

n=0

∞

∑ = 1+ x + x2
2! + x3

3! + x4
4!!

e−0.4 =1+ ( )+ 1
2!
( )2 + 1

3!
( )3 + 1

4!
( )4 + ...= 1

n!
( )n

n=0

∞

∑ =1− 0.4+ 0.08− 0.0107 + 0.00107 + ...

e−0.4 ≈ S4 =1− 0.4+ 0.08− 0.0107 ≈ 0.669

e−3 =1+ ( )+ 1
2!
( )2 + 1

3!
( )3 + 1

4!
( )4 + ...= 1

n!
( )n

n=0

∞

∑
=1− 3+ 4.5− 4.5+ 3.375− 2.025+1.0125− 0.4339+ 0.1626− 0.0044+ ...

e−3 ≈ S9 ≈ 0.0533
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Application	Example:		 Compute	 	with	 	 	 	 	

In	a	previous	example,	we	found:	
	

	

So	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

(		Wolframalpha:		 )	

e− x
2

dx
0

1/2

∫ Rn < 0.01

e− x
2

= 1− x2 + x
4

2
− x

6

6
+ x

8

24
− x

10

120
+!= (−1)n

n=0

∞

∑ x2n

n!

e− x
2

dx
0

1/2

∫ = (1− x2 + x
4

2
− x

6

6
+ x

8

24
− x

10

120
+!)dx

0

1/2

∫ = (−1)n
n=0

∞

∑ x2n

n!
dx

0

1/2

∫

e− x
2

dx
0

1/2

∫ ≈ 0.4612810064
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Application	Example:		Compute			 		with	error	<	0.0001	

Previously,	we	found	the	series	for	 	
	

	

	
	
	
	

	

	

So	 	 0.0416667-0.000372+0.00000888-…	

	

0.0416667-0.000372=0.0412947	

	
	
	
	
	

One	last	thing:	
	
Recall:		We	began	with	two	questions:	
	 Does	f	have	a	power	series	representation?		(11.10	ii)	
	 If	so,	how	do	we	find	it?	 (11.10i)	
We	have	been	working	on	the	answer	to	the	second	question.		We	will	now	look	at	the	first	question	and	discuss	the	error	
involved	in	using	the	Taylor	series	to	approximate	f(x).	

tan−1 x2( )dx
0

1/2

∫
f (x) = tan−1 x2( )

tan−1 x2( ) = x2 − x
6

3
+ x

10

5
− x

14

7
+ ...= (−1)n

n=0

∞

∑ x4n+2

2n+1

tan−1 x2( )dx
0

1/2

∫ = 1
1•3• 23

− 1
3•7• 27

+ 1
5•11• 211

− 1
7•15• 215

+ ...= (−1)n

(2n+1)(4n+ 3)24n+3n=0

∞

∑

tan−1 x2( )dx
0

1/2

∫ =

tan−1 x2( )dx
0

1/2

∫ ≈
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11.10 and 11.9 Part 5:   Proving the “=”. 
	
Does	f	actually	have	a	power	series	representation,	that	is,	does	the	Taylor	Series	corresponding	to	 	actually	converge	TO	

?			
	
Back	to	the	definition	of	convergence	of	series.		Construct	the	sequence	of	partial	sums.	

	 	

	
Recall	that	for	the	series	to	converge,	 ,	where	S	is	the	(finite)	sum.	

	
Thus,	we	need	to	show	that:	 	or	 	
	
Since	we	want	

	

to	show	 	we	need	to	show		that		

	 	 	 	 		

f (x)
f (x)

S1 = f (a)
S2 = f (a)+ ′f (a)(x − a)

S3 = _________________________________
!

Sn = f (a)+ ′f (a)(x − a)+ ′′f (a)
2!

(x − a)2 +"+ _________________

Sn+1 = f (a)+ ′f (a)(x − a)+ ′′f (a)
2!

(x − a)2 +""+ f
(n) (a)
n!

(x − a)n = Tn(x)

lim
n→∞
Sn = S

lim
n→∞
Sn = _______ lim

n→∞
Sn+1 = limn→∞

Tn(x) = ________

f (x) = f (a)+ ′f (a)(x − a)+ ′′f (a)
2!

(x − a)2 +!!+ f
(n) (a)
n!

(x − a)n + f (n+1) (a)
(n+1)!

(x − a)n+1 + f
(n+2) (a)
(n+ 2)!

(x − a)n+2 +!

= Tn(x)+
f (n+1) (a)
(n+1)!

(x − a)n+1 + f
(n+2) (a)
(n+ 2)!

(x − a)n+2 +!

lim
n→∞
Sn+1 = limn→∞

Tn(x) = f (x)
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Consider	the	following	extension	of	the	MVT*…		It	can	be	shown,	in	Advanced	Calculus,	that	for	some	c	between	x	and	
a,	

	for	some	c	between	x	and	a.	

	
Thus,	we	need	only	show	

	 	 	

	for	any	c	between	x	and	a.			
	
	

We	know								
	
,(why?)				so	we	only	need	to		show	that	 	is	bounded	for	c	between	

x	and	a,	that	is			 ,		
	
Example:		Show	that	the	Maclaurin	Series	for	 	converges	to	 .	
	
	
	
	

lim
n→∞

f (n+1) (a)
(n+1)!

(x − a)n+1 + f
(n+2) (a)
(n+ 2)!

(x − a)n+2 +!
⎛
⎝⎜

⎞
⎠⎟
= ___________

f (n+1) (a)
(n+1)!

(x − a)n+1 + f
(n+2) (a)
(n+ 2)!

(x − a)n+2 +!!= f
(n+1) (c)
(n+1)!

(x − a)n+1

lim
n→∞

f (n+1) (c)
(n+1)!

(x − a)n+1
⎛
⎝⎜

⎞
⎠⎟
= 0

lim
n→∞

1
(n+1)!

(x − a)n+1 = _____________ f (n+1) (c)

f (n+1) (c) ≤ M

f (x) = sin x sin x
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11.11  Error for Taylor Polynomial Approximation 
	
So	far,	the	only	error	estimates	we	have	discussed	for	series	are	for	the	____________________________		
	
and	the	______________________________.		What	if	neither	or	these	apply	to	the	Taylor	Series	for	a	given	function,		What	can	be	said	
about	the	error?	
	
For	a	function	given	by	its	Taylor	Series:	
	

	

	

	
let	 	represent	the	error	associated	with	using	the	nth	degree	Taylor	Polynomial	to	approximate	 	.	Then		
	
	 	
	
But	we	found	in	the	previous	section	that	for	some	c	between	x	and	a	

	 	

which	means	
	
	 	
	
If	 	is	bounded	for	c	between	x	and	a,	that	is	if		 	,	then	

		 	
	
	

f (x) == Tn(x)+
f (n+1) (a)
(n+1)!

(x − a)n+1 + f
(n+2) (a)
(n+ 2)!

(x − a)n+2 +!

Rn(x) f (x)

Rn(x) =

f (n+1) (a)
(n+1)!

(x − a)n+1 + f
(n+2) (a)
(n+ 2)!

(x − a)n+2 +!!= f
(n+1) (c)
(n+1)!

(x − a)n+1

Rn(x) =

f (n+1) (c) f (n+1) (c) ≤ M

Rn(x) ≤
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Example:	
 (a)   Approximate the function  by T3(x), the third degree Taylor Polynomial     centered at a=1. 

 (b)  Use T3(x) to approximate   
 (c)  Use Taylor’s inequality to estimate the accuracy of the approximation when x lies in the interval    
 
(a)  
 

			    

	
	
(b)			  
	
	
	
	
	
	

(c) 	,					where	 	for	some	c	between	x	and	a,	so 	

 			________________________		,	where	________________	for	some	c	between	x	and	1,		 	 	 	 	
	 where	 .	

	
	
	
	
	
(Note:		this	is	more	powerful	than	the	alternating	series	error	estimate	because	it	can	be	used	to	find	what	values	of	x	are	
allowed	with	a	given	n	and	error	tolerance)	

f (x) = x2/3

0.82/3
0.7 ≤ x ≤1.3

T3(x) = f (a)+ ___________________________________

= f (1)+ ___________________________________

= __________________________________________

0.82/3 ≈

Rn(x) ≤
M

(n+1)!
(x − a)n+1 f (n+1) (c) ≤ M

R3(x) ≤
0.7 ≤ x ≤1.3


